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Superalgebras
Polynomial identities

1. Introduction

Let F be any field of characteristic different from two and let L be a vector space 
over F with basis {e1, e2, . . . }. The infinite dimensional Grassmann algebra E of L over 
F is the vector space with a basis consisting of 1 and all products ei1ei2 · · · eik , where 
i1 < i2 < . . . < ik, k ≥ 1. The length of ei1ei2 · · · eik is the number k that is denoted 
by |ei1ei2 · · · eik |. The multiplication in E is induced by eiej = −ejei for all i and j. 
We shall denote the above canonical basis of E by BE . The Grassmann algebra has a 
natural Z2-grading Ecan = E(0) ⊕E(1), where E(0) is the vector space spanned by 1 and 
all products ei1 · · · eik with even k while E(1) is the vector space spanned by the products 
with odd k. It is well known that E(0) = Z(E) (here Z(E) denotes the center of E), and 
E(1) is the “anticommuting” part of E.

The study of the Grassmann algebra E with its natural grading by the cyclic group 
Z2 is an important part of the theory of algebras with polynomial identities. In [11,12]
Kemer developed a deep and far-reaching theory of varieties of associative algebras with 
polynomial identities. More precisely, the algebra E is the most powerful tool (and, 
at the moment, the only one) to construct a general T -ideal from the one of a finite 
dimensional one via the Grassmann envelope. Thus, in Kemer’s theory the natural Z2-
grading on E and the corresponding Z2-graded polynomial identities satisfied by E
were of crucial importance. Consequently, gradings of the Grassmann algebra may shed 
light on what kind of mathematical construction should be investigated in order to find 
out how to cover identities from weaker ones. When the field is infinite and of positive 
characteristic, they turned out to be crucial too (see, for example, [13–15]). Apart from 
it, the Grassmann algebra arises naturally in many fields of physical and mathematical 
sciences, and the interested reader can consult [1] for a treatment of this topic. This 
highlights the importance of the algebra E in the science.

A natural question arises: Describe all possible Z2-gradings on E. The first studies on 
this direction were conducted by Anisimov, in 2001–2002, see [4,5]. When the field F is 
of characteristic 0 this was done by Di Vincenzo and Da Silva [6], and if F is infinite and 
of characteristic different from 2, by Centrone [2]. In those two last papers the authors 
assumed that the underlying vector space L of E is homogeneous in the grading. The 
way to define a homogeneous Z2-grading on E is relatively simple. For this, it is enough 
to choose the degrees of a basis of L. In [2,6,9] the authors studied the graded identities 
for such Z2-gradings on E. Furthermore, in [3,7], some cases of gradings on E by finite 
abelian groups of order greater than 2 were also investigated.

The construction of non-homogeneous Z2-gradings is more complicated, see [10]. Ac-
tually there is not a complete classification for such gradings of E, but it can be done 
via duality with automorphisms of order at most 2 on E. This duality is well known. It 
relies on the fact that if G is a finite abelian group then G is isomorphic to its dual group 
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assuming that the field is large enough. As we are interested in gradings by the group 
Z2 we need no further assumptions on the base field (apart from its characteristic being 
different from 2). Thus if ϕ ∈ Aut(A) is an automorphism of an algebra A of order at 
most two, then one has a Z2-grading on A given by A = A0,ϕ⊕A1,ϕ. Here A0,ϕ and A1,ϕ
are the eigenspaces in A associated to eigenvalues 1 and −1 of the linear transformation 
ϕ. Reciprocally to each Z2-grading on A one associates an automorphism of A of order 
≤ 2 as follows. If A = A0 ⊕ A1 is the Z2-grading the automorphism ϕ is defined by 
ϕ(a0 +a1) = a0 −a1 for every ai ∈ Ai, i = 0, 1. We shall need this duality in the form of 
a duality between group gradings and group actions, see for example [8] for a discussion 
in the general case.

In this paper we investigate the problem whether in every Z2-grading of E there 
is at least one element of the underlying vector space L that is homogeneous in the 
grading. This was posed in [10] as a conjecture. To this end our paper is organized as 
follows. In Section 2 we give the necessary background concerning Z2-gradings on the 
Grassmann algebra and their graded identities. In Section 3 we prove a weak version of 
the conjecture. As a consequence, we will provide a condition for a Z2-grading on E to 
behave as Ecan. In other words, we obtain a characterization of Ecan by means of its 
Z2-graded polynomial identities. Furthermore, in Section 4 we construct a Z2-grading 
on E that gives a negative answer to this conjecture.

We hope that our results about the natural grading of E may shed additional light 
on the construction of T -ideals, and consequently on the polynomial identities of PI-
algebras.

2. Preliminaries

Let A be an unitary associative F -algebra. We say that A is a Z2-graded algebra 
(or superalgebra) whenever A = A0 ⊕A1 where A0, A1 are F -subspaces of A satisfying 
AiAj ⊂ Ai+j for i, j ∈ Z2. For each Z2-grading on A, we will denote it by a specific 
symbol, for example Γ. The vector subspace Ai is called homogeneous component of 
degree i and a non-zero element a in it is homogeneous; we denote it by ‖a‖ = i. A 
vector subspace (subalgebra, ideal) W ⊂ A is graded if W = (W ∩A0) ⊕ (W ∩A1).

We point out that we use freely the terms superalgebra and Z2-graded algebra as 
synonymous although this is an abuse of terminology. In the associative case they are 
indeed synonymous while in the nonassociative setting they are not. Indeed, a Lie or 
a Jordan superalgebra is not, as a rule, a Lie or a Jordan algebra. The correct setting 
in the general case should be as follows. Let A = A0 ⊕ A1 be a Z2-graded algebra and 
let V be a variety of algebras (not necessarily associative). Then A is a V-superalgebra 
whenever A0 ⊗ E(0) ⊕ A1 ⊗ E(1) is an algebra belonging to V. Since we shall deal with 
associative algebras only such a distinction is not relevant for our purposes, and we are 
not going to make any difference between superalgebras and Z2-graded algebras.

In what follows we assume that the reader knows the definitions of homomorphism, 
endomorphism and automorphism of algebras. Let A and B be superalgebras, a ho-
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momorphism f : A → B is a Z2-graded homomorphism if f(Ai) ⊂ Bi for all i ∈ Z2. 
When there exists a Z2-graded isomorphism between A and B we say that A and B are 
isomorphic superalgebras and we denote it by A � B.

One defines a free object in the class of superalgebras by considering the free F -
algebra over the disjoint union of two countable sets of variables, denoted by Y and Z. 
We assume further that the elements of Y are of degree zero and the elements of Z are of 
degree 1. This algebra is denoted by F 〈Y ∪Z〉. Its even part is the vector space spanned 
by all monomials whose degree counting only the elements of Z, is an even integer. The 
remaining monomials span the odd component. The elements of F 〈Y ∪Z〉 are called Z2-
graded polynomials (or simply polynomials). It is straightforward that F 〈Y ∪Z〉 is a free 
algebra in the sense that for every superalgebra A and for every map ϕ : Y ∪Z → A such 
that ϕ(Y ) ⊆ A0 and ϕ(Z) ⊆ A1 there exists unique homomorphism of superalgebras 
F 〈Y ∪ Z〉 → A that extends ϕ.

Let Γ: A = A0 ⊕ A1 be a superalgebra. We say that the polynomial f(y1, . . . , yl, z1,

. . . , zm) ∈ F 〈Y ∪Z〉 is a Z2-graded polynomial identity for Γ if f(a1, . . . , al, b1, . . . , bm) =
0 for all admissible substitution a1, . . . , al ∈ A0 and b1, . . . , bm ∈ A1. The set of all Z2-
graded polynomial identities of A is a graded ideal of F 〈Y ∪ Z〉. It is called T2-ideal, 
and denoted by T2(Γ). Given a superalgebra Γ′ : B = B0 ⊕B1, we say that A and B are 
PI-equivalent as superalgebras if T2(Γ) = T2(Γ′).

As already mentioned in the introduction, to define a homogeneous Z2-grading on E
is enough to choose the degrees of a basis of L. More specifically, according to [6], given 
k ∈ N0 = N ∪ {0}, there are the following possibilities:

‖ei‖k =
{

0, if i = 1, . . . , k
1, otherwise

,

‖ei‖k∗ =
{

1, if i = 1, . . . , k
0, otherwise

,

and

‖ei‖∞ =
{

0, if i is even
1, otherwise

.

The degree of a monomial ei1ei2 · · · eit is ‖ei1ei2 · · · eit‖ = ‖ei1‖ +‖ei2‖ +· · ·+‖eit‖, where 
the latter is taken in Z2. These gradings are denoted by Ek, Ek∗ , and E∞, respectively. 
When ‖ei‖ = 1 for all i, we recover Ecan. Thus, we have three structures of homogeneous 
superalgebra on E, up to an isomorphism. Notice that all homogeneous Z2-gradings on 
E correspond to the automorphisms ϕ on E satisfying, for an appropriate basis of E, 
the conditions

ϕ(ei) = ±ei.
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In general, for each automorphism ϕ on E of order at most 2, we have a structure of 
Z2-grading on E, denoted by Eϕ = E0,ϕ ⊕E1,ϕ.

3. A characterization of Ecan

The goal of this section is to prove a weak version of the conjecture formulated in 
[10]. As a consequence, we obtain a characterization of Ecan by means of its Z2-graded 
polynomial identities.

Let ϕ be an automorphism on E of order at most 2, i.e., ϕ2 = id. Here the automor-
phism identity of E is denoted by id. As in the above section, Eϕ = E0,ϕ ⊕E1,ϕ denotes 
the Z2-grading on E induced by ϕ. We observe that

ei = (ei + ϕ(ei))/2 + (ei − ϕ(ei))/2, for i ∈ N.

If we set V0 = {(ei + ϕ(ei))/2 | i ∈ N} and V1 = {(ei − ϕ(ei))/2 | i ∈ N}, then each 
element of BE is written as a sum of products of elements in V0 ∪ V1.

The next lemma is of easy deduction, and for this reason we omit its proof.

Lemma 1. The component E0,ϕ is spanned by all products of elements in V0 and V1 with 
an even number of factors in V1, and E1,ϕ is spanned by all products of elements in V0

and V1 with an odd number of factors in V1.

Now, we define Iβ = {n ∈ N | ϕ(en) = ±en}. We distinguish the following possibili-
ties:

(1) Iβ = N.
(2) Iβ �= N is infinite.
(3) Iβ is finite and non-empty.

Pay attention there might be a basis β of L such that Iβ = ∅ but Iβ′ �= ∅ for some 
other basis β′ of L. Hence the fourth possibility is

(4) Iγ = ∅ for every basis γ of the vector space L.

We shall call these automorphisms (and also the corresponding Z2-gradings), auto-
morphisms (Z2-grading) of type (1), (2), (3), and (4), respectively.

Now we obtain the following lemma.

Lemma 2. Let ϕ be an automorphism on E of order at most 2. If T2(Eϕ) = T2(Ecan), 
then E0,ϕ ⊂ Z(E). In particular, ei + ϕ(ei) ∈ Z(E), for all i.
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Proof. It is known that

[y, x] ∈ T2(Ecan) = T2(Eϕ),

where x ∈ Y ∪Z. It implies immediately that E0,ϕ ⊂ Z(E). From ei +ϕ(ei) ∈ E0,ϕ, the 
latter part follows. �

The next steps to obtain the main result of this section are to analyze the automor-
phisms ϕ of E according to its type. To this end we need a series of results.

Proposition 3. Let Ed be a homogeneous Z2-grading on the Grassmann algebra E and 
let ϕ be an automorphism on E of order at most 2. If ϕ is of type (1), the following 
statements hold:

(a) T2(Ed) = T2(Eϕ) if and only if Ed � Eϕ.
(b) If T2(Eϕ) ⊃ T2(Ecan), then Eϕ � Ecan.

Proof. The fact that ϕ is an automorphism of type (1) implies that Eϕ is a homogeneous 
Z2-grading on E. Item (a) follows as a straightforward consequence of [2,6,9]. For the 
statement in (b), notice that T2(Eϕ) ⊃ T2(Ecan) implies [y, x] lies in T2(Eϕ), for any 
x ∈ Y ∪ Z. Since the gradings Ek∗ and E∞ do not satisfy such identity, it follows that 
Eϕ � Ek, for some k ∈ N0. Furthermore there exists a homogeneous subalgebra of Ek

which is isomorphic to Ecan. Hence,

T2(Eϕ) ⊂ T2(Ecan),

so we conclude T2(Eϕ) = T2(Ecan). Applying statement (a), we obtain Eϕ � Ecan. �

Proposition 4. There does not exist ϕ ∈ Aut(E) of type (2) such that T2(Eϕ) = T2(Ecan).

Proof. Due to Lemma 2, ei+ϕ(ei) ∈ E(0). On the other hand, if ϕ is of type (2), according 
to [10, Proposition 1], ϕ satisfies ϕ(ei) ∈ E(1), for all i. Hence ei + ϕ(ei) ∈ E(1), which 
gives us

ei + ϕ(ei) ∈ E(0) ∩ E(1),

and then ϕ(ei) = −ei, for all i ∈ N. The latter statement implies ϕ of type (1) which is 
a contradiction. This completes the proof. �

Lemma 5. Let ϕ be an automorphism on E of type (3). If T2(Eϕ) = T2(Ecan), then:

(a) there exists a natural number k such that ϕ is defined by

ϕ(en) =
{
−en, if n ≤ k

−e + e e · · · e W , if n > k
.

n n 1 k n
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Moreover, k even implies Wn ∈ E(1) and k odd implies Wn ∈ Z(E), for all n > k.
(b) E0,ϕ = Z(E).

Proof. Statement (a): As ϕ is of type (3), there exists a finite number of homogeneous 
generators in the grading, namely e1, . . . , ek, for some k.

From Lemma 2 it follows that e1, . . . , ek ∈ E1,ϕ, which implies ϕ(en) = −en, for 
n = 1, . . . , k. Given n > k, using again Lemma 2, we have that Zn = ϕ(en) + en ∈ Z(E)
is non-zero. Since ϕ(en)2 = 0, we obtain that −2enZn +Z2

n = 0. Comparing the lengths 
of each parcel, we conclude Zn = enZ

′
n, where Z ′

n ∈ E(1). Now, given j = 1, . . . , k, due 
to ϕ(en)ϕ(ej) + ϕ(ej)ϕ(en) = 0, it follows Z ′

n = e1 · · · ekWn. The last part is immediate 
by the previous equality.

Statement (b): Lemma 2 implies the inclusion E0,ϕ ⊂ Z(E). To prove the reverse 
inclusion, it is enough to show that eiej ∈ E0,ϕ, for all i, j. When i, j ∈ {1, . . . , k}, 
eiej ∈ E0,ϕ is immediate. If ei ∈ E1,ϕ and

ϕ(ej) − ej = −2ej + eje1 · · · ekWj ∈ E1,ϕ,

for every j /∈ {1, . . . , k}, then eiej ∈ E0,ϕ. Finally, when i, j /∈ {1, . . . , k}, notice that

(ϕ(ei) − ei)(ϕ(ej) − ej) ∈ E0,ϕ,

i.e.,

(−2ei + eie1 · · · ekWi)(−2ej + eje1 · · · ekWj) ∈ E0,ϕ ⊂ Z(E).

Therefore, eiej ∈ E0,ϕ, since ejeie1 · · · ekWi + eieje1 · · · ekWj ∈ E(1), and we are 
done. �

The following proposition is an important tool to prove the main result of this section.

Proposition 6. Let ϕ be an automorphism on E of order at most 2. If ϕ is of type (3)
and T2(Eϕ) = T2(Ecan), then Eϕ � Ecan.

Proof. Following the notation of the previous lemma, the set V1, defined before of 
Lemma 1, is {vn | vn = en if n ≤ k, vn = un if n > k}, where un = −2en+ene1 · · · ekWn. 
According to item (b) of Lemma 5 and Lemma 1, we conclude that

E0,ϕ = Z(E) = spanF {vi1 · · · vit | i1 < . . . < it},

for t even, and

E1,ϕ = spanF {vi1 · · · vit | i1 < . . . < it},

for t odd. The map fϕ : Ecan → Eϕ, defined by
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fϕ(en) =
{
−2en, if n ≤ k

vn, if n > k
,

can be extended to a Z2-graded homomorphism, since it satisfies fϕ(ei)fϕ(ej) +
fϕ(ej)fϕ(ei) = 0, for all i, j. It is also clear that fϕ is surjective. Therefore,

Eϕ � Ecan

I ,

where I = ker(fϕ) is a graded ideal of Ecan.
We claim that I = {0}. Indeed, given ei1 · · · eit ∈ BE , we have

fϕ(ei1 · · · eit) = (−2)tei1 · · · eit +
∑

Pj∈BE ,|Pj |>t

αjPj ,

where αj ∈ F .
Let w1, . . . , ws ∈ BE be distinct monomials and λ1, . . . , λs ∈ F , with each λi �= 0, 

satisfying

λ1w1 + · · · + λsws ∈ I.

We can assume |w1| ≤ . . . ≤ |ws|. It follows that

0 = fϕ(λ1w1 + · · · + λsws)

= (−2)|w1|λ1w1 +
∑

Qj∈BE ,|Qj |≥|w1|
σjQj ,

where each Qj �= w1 and σj ∈ F . The last equality implies λ1 = 0, which is a contradic-
tion. Therefore, I = {0} and we are done. �

Remark 7. We draw the reader’s attention that there exists at least one automorphism 
ϕ on E of type (3) such that T2(Eϕ) = T2(Ecan), see [10, Proposition 11].

From now on, we will deal with automorphisms of type (4). As promised at the 
beginning of the section, the next result is a weak version of the conjecture presented in 
[10].

Theorem 8. Let ϕ be an automorphism on the Grassmann algebra E of order at most 
2. If T2(Eϕ) = T2(Ecan), then there exists a non-zero vector v ∈ L homogeneous in the 
Z2-grading Eϕ. Consequently, ϕ is not of type (4).

Proof. By Lemma 2, it is known that ei + ϕ(ei) ∈ E(0). Following word by word the 
argument presented in item (a) of Lemma 5, for each natural number i, we may write
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ϕ(ei) = −ei + eiWi, (1)

where Wi = λ1
iw

1
i + · · · + λni

i wni
i , eiwnr

i �= 0, for 1 ≤ r ≤ i, and the set {wj
i | j =

1, . . . , ni} ⊂ E(1) is linearly independent.
Next we consider the following notations. Given a basic element (or monomial) w =

ei1 · · · eik in BE , the set supp(w) = {ei1 , . . . , eik} is called support of w. For any monomial 
w1 = ej1 · · · ejl in BE , we say that w and w1 have pairwise disjoint supports if supp(w) ∩
supp(w1) = ∅ and, consequently, ww1 �= 0. And to finish, for each W = λ1w1+· · ·+λnwn

in E, denote by S(W ) the set formed by the union of supp(wi), with 1 ≤ i ≤ n. Here 
each wi lies in BE and λi ∈ F . In particular, if W = Wi given in (1), then ei /∈ S(Wi), 
for all i.

Since

ϕ(ek)ϕ(ei) + ϕ(ei)ϕ(ek) = 0,

for all i, k ∈ N, we have

(−ekeiWi − ekWkei + ekWkeiWi) + (−eiekWk − eiWiek + eiWiekWk) = 0.

It follows from the latter equality that

−ekeiWi − eiekWk + ekWkeiWi = 0.

Due to both ekeiWi+eiekWk ∈ E(1) and ekeiWkWi ∈ E(0), we conclude that ekeiWi+
eiekWk = 0 and ekeiWkWi = 0. Consequently,

ekeiWi = ekeiWk. (2)

Moreover, for any i and j, we can write

Wi = ejPi + Ti, (3)

where Pi ∈ E(0), Ti ∈ E(1) and ej /∈ S(Ti). By (2), if ei /∈ S(Wj), we then have

Wj = Ti (4)

Recall that ni is the number of parcels that occur in Wi. Let nk = min{ni | i ∈ N}. 
If nk = 0, then ϕ(ek) = −ek and the result follows. Hence we may assume that nk > 0. 
We will prove that Wi = Wk, for all i. If ek /∈ S(Wi), for some i, then Tk = Wi. By the 
minimality of k, we obtain Wk = Wi. Thus, we suppose that there exists at least one j
such that ek ∈ S(Wj). As the set S(Wj) ∪S(Wk) is finite, we take ei /∈ S(Wj) ∪S(Wk). 
Due to (4), it follows that Wj = Ti = Wk. Therefore, there exists a non-zero Q ∈ E(1)
such that Wi = Q, for all i.
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So

ϕ(ei) = −ei + eiQ,

where Q = Wi and ei /∈ S(Wi). Assuming et ∈ S(Q), we obtain

ϕ(et) = −et + etQ,

where Q = Wt, which contradicts the fact that et /∈ S(Wt) = S(Q). We conclude that 
nk = 0, and ek is a homogeneous element in the Z2-grading Eϕ. �

Due to our results, we obtain a characterization of Ecan via T2(Ecan). The next is one 
of the main results of this section.

Theorem 9. Let ϕ be an automorphism on the Grassmann algebra E of order at most 2. 
If T2(Eϕ) = T2(Ecan), then Eϕ and Ecan are Z2-isomorphic.

Proof. As Eϕ is PI-equivalent to Ecan, Proposition 4 and Theorem 8 imply that ϕ is of 
type (1) or (3). If ϕ is of type (1), we apply item (b) of Proposition 3. If ϕ is of type (3), 
we apply Proposition 6. So we are done. �

The arguments applied in Proposition 4, Proposition 6 and Theorem 8 work with 
a weaker assumption. More specifically, assuming ϕ ∈ Aut(E) such that ϕ2 = id, the 
hypothesis T2(Eϕ) = T2(Ecan) can be replaced for

[y, x] ∈ T2(Eϕ),

where x ∈ Y ∪ Z.
In the light of the last comment, we have a better characterization for the structure 

Ecan.

Theorem 10. Let ϕ be an automorphism on the Grassmann algebra E of order at most 2, 
and let Eϕ = E0,ϕ⊕E1,ϕ be the Z2-grading on E induced by ϕ. The following statements 
are equivalent:

(1) T2(Eϕ) = T2(Ecan).
(2) [y, x] ∈ T2(Eϕ), where x ∈ Y ∪ Z.
(3) E0,ϕ = Z(E).
(4) Eϕ � Ecan.

Proof. Notice that (1) ⇒ (2) and (4) ⇒ (1) are immediate. Already for (2) ⇒ (3) and 
(3) ⇒ (4) we use similar arguments contained in the proof of Lemma 5. �
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4. Concrete Z2-gradings of type (4)

In the paper [10], the authors conjectured the non-existence of automorphisms of type 
(4), and it was strengthened by Theorem 8. The goal of this section is to construct a 
kind of automorphism that gives a negative answer to the conjecture.

First we will introduce some notations that will be useful.

Definition 11. Let I = {2n ∈ N, n > 1 | ∃m ∈ N such that 2m ≤ n < 2m + 2m−1}. We 
define the sequence {εi}i∈N by

ε2n−1 = −1, if 2n ∈ I;

ε2n−1 = 1, if 2n ∈ N \ I;
ε2n = 1, for all n.

Remark 12. According to Definition 11, we have ε1 = 1, ε2 = 1, ε3 = −1, ε4 = 1, ε5 = 1, 
ε6 = 1, ε7 = −1, and so on.

Lemma 13. Given a natural number n, we have ε1 · · · ε2n+1 = −εn.

Proof. We use induction on n. In the proof we omit the scalars with even indexes in 
the product. By Remark 12, we have that ε1ε3 = −ε1. So the result holds for n = 1. 
From now on, assume the validity of the result for n > 1. We take into consideration the 
following cases:

If n is even, there exists k ∈ N such that n = 2k. In this case, by induction hypothesis

ε1ε3 · · · ε4k−1ε4k+1 = −1,

and we need to show

ε1ε3 · · · ε4k+1ε4k+3 = −ε2k+1,

which is equivalent to show that ε4k+3 = ε2k+1. If ε2k+1 = −1, then 2(k+1) ∈ I. Hence, 
there exists a natural number m such that

2m ≤ k + 1 < 2m + 2m−1.

Therefore,

2m+1 ≤ 2k + 2 < 2m+1 + 2m.

This implies 2k + 2 ∈ I, hence ε4k+3 = −1. Similarly ε4k+3 = −1 implies ε2k+1 = −1, 
since k > 0. Therefore, we proved that ε4k+3 = −1 if and only if ε2k+1 = −1 and the 
result follows for n even.
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Now, we analyze the case n odd, in other words, there exists k ∈ N such that n =
2k + 1. By induction, we assume

ε1 · · · ε4k+3 = −ε2k+1.

As it was done before

ε1 · · · ε4k+5 = −1

is equivalent to show that ε4k+5 = ε2k+1. If ε2k+1 = −1, then 2(k + 1) ∈ I. Hence, there 
exists natural number m such that

2m ≤ k + 1 < 2m + 2m−1.

As 2m + 2m−1 − 1 < 2m + 2m−1, we have

2m ≤ k + 1 ≤ 2m + 2m−1 − 1,

so

2m+1 ≤ 2k + 2 ≤ 2m+1 + 2m − 2.

Due to this last inequality, it follows that

2m+1 ≤ 2m+1 + 1 ≤ 2k + 3 ≤ 2m+1 + 2m − 1 < 2m+1 + 2m.

Hence 2k+3 ∈ I and it implies ε4k+5 = −1. Analogously, if ε4k+5 = −1, then ε2k+1 = −1. 
The result is proved for n odd, and we are done. �

Let wn = e1e2 · · · e2n+1. We define the linear transformation λ : L → L by

λ(ei) = εiei,

where the sequence {εi}i∈N was presented in Definition 11. We extend λ to an unique 
automorphism of E. According to the previous lemma, we have

λ(wn) = ε1 · · · ε2n+1wn = −εnwn.

Next, we will construct an automorphism of type (4) of the Grassmann algebra E. 
For this, we define the linear transformation ϕ : E → E by

ϕ(ei) = εiei + wi.

The following theorem is the main result of this section.
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Theorem 14. The linear transformation ϕ defined above is an automorphism of type (4) 
of the Grassmann algebra.

Proof. It is well known that any linear transformation φ on E satisfying

φ(ei)φ(ej) + φ(ej)φ(ei) = 0,

for any i, j ∈ N, can be extended to an unique endomorphism of E. As εiei +wi ∈ E(1), 
it follows that ϕ can be extended to an endomorphism of the algebra E. Besides,

ϕ2(ei) = εi(εiei + wi) + ϕ(wi).

Notice that

ϕ(wi) = ϕ(e1) · · ·ϕ(e2i+1) = ε1 · · · ε2i+1wi = −εiwi.

The last equality follows from Lemma 13. Thus, ϕ is an automorphism of order 2.
Now we claim that ϕ is of type (4). Assume v ∈ L such that ϕ(v) = ±v. There exist 

α1, . . . , αn ∈ F so that v = α1ei1 + · · · + αnein . Thus,

±(
n∑

k=1

αkeik) = ±v = ϕ(v) =
n∑

k=1

αk(εkeik + wik).

Comparing the lengths of the parcels in the last equality, we conclude that 
∑n

k=1 αkwik =
0. As the set {wi | i ∈ N} is linearly independent, we have α1 = · · · = αn = 0. Therefore, 
we have the result. �

Let Eϕ be the Z2-grading on E induced by the automorphism ϕ constructed above. 
As a consequence of Theorem 8, we conclude immediately that

T2(Eϕ) �= T2(Ecan).

A natural question arises. What are the generators of the T2-ideal of the Z2-graded 
polynomial identities of Eϕ? The following result answers such question.

Proposition 15. The Z2-graded algebras Eϕ and E∞ are isomorphic superalgebras.

Proof. Let {εi}i∈N be the sequence given in Definition 11. We consider A = {i ∈ N |
εi = 1} and B = {i ∈ N | εi = −1}. Assume that Eh is the homogeneous Z2-grading on 
E given by

‖ei‖ =
{

0, if i ∈ A

1, if i ∈ B
.
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Since both A and B are infinite, we conclude that Eh and E∞ are isomorphic superal-
gebras. Now we define the map f : Eh → Eϕ by

f(ei) =
{
ei + wi/2, if i ∈ A

ei − wi/2, if i ∈ B
.

It follows that f can be extended to an endomorphism of E, once wi ∈ E(1), for each 
i ∈ N. Moreover, f is a Z2-graded endomorphism.

For each i, notice that

f(wi) = f(e1 · · · e2i+1) = (e1 ±
w1

2 ) · · · (e2i+1 ±
w2i+1

2 ) = wi.

We claim that f is an isomorphism, for this it is enough to provide the inverse map for 
f . Let g : Eϕ → Eh be the map given by

g(ei) =
{
ei − wi/2, if i ∈ A

ei + wi/2, if i ∈ B
.

As it was done for f , it follows that g(wi) = wi, for each i ∈ N. When i ∈ A, we have

g ◦ f(ei) = g(ei + wi/2) = ei − wi/2 + wi/2 = ei.

Similarly, g ◦f(ei) = ei, if i ∈ B. Therefore, we have g = f−1, and the result follows. �

In [10], the authors constructed Z2-gradings on E of types (2) and (3). In the present 
section, we provide a concrete Z2-grading of type (4). It turns out that all these structures 
are Z2-isomorphic to some homogeneous Z2-grading of E. These statements provide us 
with the ground to pose the following conjecture.

Conjecture 1. Every Z2-grading of E is Z2-graded isomorphic to some homogeneous 
Z2-grading of E.
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